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ATSVP
LOS
MCC

M50

s/C

TCA

TEI

Symbols:

ACRONYMS AND SYMBOLS

Acquisition~of-signal

Area Targets and Space Volumes Processor
Loss-of-signal

Mission Control Center

Aries Mean-o0f-1950

Rotation, nutation, and precession
Spacecraft

Time of closest approach

True-of-epoch inertial

Semimajor axis

"Adjustment factor" for computing altitude above
the Fischer ellipsoid

Vector along the centerline of a polyhedron
Perpendicular distance to the side of a polyhedron
Eccentricity

Eccentric anomaly

Flattening coefficient

True anomaly

Altitude

Inclination

Mean anomaly

Number of sides

Unit outward normal vector
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TEI
M50

Radius of the Earth-referenced circle
Mean equatorial radaus
Spacecraft position vector

RNP matrix from the mean-of-1950 coordinate
system to the true-of-epoch inertial system

Time

Epoch time corresponding to the RNP matrix
Argument of latitude

Right ascension

Declination

Geodetic latitude

Geocentric laticude

Central angle
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Earth gravitational constant
Slant range vector

Time of perigee passage

Araument of verigee

Earth rotation rate

Right ascension of ascending node

Ascending node vector
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Subscripts:
AOS

B

LOS
Superscripts:

G

TEI

blank

Denotes a parameter associated with the AOS point

Denotes a vector measured from the lower boundary
(i.e., base) of a polyhedron

Denotes a parameter associated with the closest
approach point
th

Denotes the 1i vertex or side of a polygon or

. th

polyhedron. Also denotes the i occurrence of

an event

Denotes a parameter associated with the LOS point

Denotes a parameter in the rotating geocentric
coordinate system

Denotes a parameter in the true-of-epoch inertial
coordinate system

Denotes a parameter in the mean-of-1950 coordinate
system

Denotes a unit vector

Denotes a vector
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1.0 INTRODUCTION

This document provides the level B/C mathematical specifications
for the Area Targets and Space Volumes Processor (ATSVP). Pur-
suant to the requirements of reference 1, this processor is de-
signed to compute the acquisition-of-signal (A0S) and loss-of-
signal (LOS) times for the following:

a. Area targets

(1)

(2)

(3)

(4)

Earth-referenced circles which are specified by a
latitude, longitude, altitude, and radius.

Celestial circles which are specified by a right
ascension, declination, and angular radius.
Earth-referenced polygons which are arbitrary Earth-
fixed figures having up to five sides with the
"corner points" defined by latitude, longitude, and
altituce.

Celestial polygons which are arbitrary, inertially
fixed figures having up to five sides with the corner
points defined by right ascension and declination on

the celestial sphere.

b. Space volumes

(1)

(2)

Earth-referenced space volumes which are arbitrary, Earth-
fixed polyhedrons having up to five sides. These volumes
are defined by a lower-limit polygon at an altitude, hl’

and the projection of this polygon to an altitude, h2.

The corner points of the polygon are defined by

latitudes and longitudes and rotate with the Earth.
Celestial-fixed space volumes which are arbitrary, inertial-
ly fixed polyhedrons having up to five sides. These volumes
are defined by a lower-limit polygon at an altitude, hl'

and the projection of this polygon to an altitude, h2.

The corner points of the polyyon are defined by right
ascension and declination on the celestial sphere.

1-1



The AOS and LOS times for these targets are defined (ref. 1) as
follows:

a. Ground circles and polygons
AOS - the time corresponding to the first subsatellite point
to lie just inside the area.
LOS - the time corresponding to the last subsatellite point
just prior to exiting the area.
b. Celestial circles and polygons
A0S - the time corresponding to the first zenith point to lie
just inside the area.
LOS - the time corresponding tc the last zenith peoint just
prior to exiting the area.
c. Earth-referenced and celestial-fixed space volumes
A0S - the time at which the spacecraft (S/C) is just entering
the volume.
LOS - the time just prior to the S/C exiting the volume.

Six data tables will contain the infcrmation necessary to completely
describe the area targets and space volumes. These tables (ref. 1)

are as follows:

a. Ground targets table containing 10 targets in 1 block of data.
b. Celestial circles table -ontaining 10 targets in 1 block of data.
¢. Ground polygons table cuntiining 20 targets in 2 blocks of data.
d. Celestial | olygons table containing 10 targets in 1 block of dzta.
e. Earth-refersenced space volumes table containing 10 targets in

1 block oi data.
f. Celestial-fixed volumes table containing 10 targets in 1 block

of data.

Section 2 of this document describes the characteristics of the
area targets and space volumes and provides the mathematical
equations necessary to determine whether the S/C lies within

the area target or space volume. These equations provide a
detailed model of the target geometry and will be used during
the precise numerical search.
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Section 3 discusses a semfanalytical technique for predicting

the A0S and LOS time periods. This technique is designed to
bouand the actual visibility period using a simplified target
geometry model and unperturbed orbital motion. Its principal
purpose is to reduce the burden on the precise numerical search
by eliminating regions of the S/C orbit where AOS and LOS times
are physically impossible. Section 4 provides a functional over-
view of the ATSVP. This section outlines the overall process
required to determine precise A0S and LOS times.

Section 5 presents the detailed logic flow for the ATSVP. This
section integrates the functional overview presented in section

4 with the equations and approach presented in sections 2 and 3
and the appendixes. Appendix A discusses the procedure for sub-
dividing complex concave polygons into two or more simpler convex
segments. The purpose of this subdivision process is to pernit
the equations in section 2 to be used on a segment-by-segment
basis to test for containment. Appendix B provides a solution

to the conic intersection equations used in section 3 for

celestial-fixed targe*s.



2.0 AREA TARGETS AND SPACE VOLUMES CHARACTERISTICS AND CONTAINMENT
CRITERIA

The following subsections discuss the characteristics of each of
the area targets and space volumes presented in section 1. The
mathematical equations necessary to determine whether the S/C lies
within the area target or space volume are also developed and dis-
cussed.

Two reference coordinate systems will be used. The inertial

Aries mean-of-1950 (M50) coordinate system (fig. 2-1) will be the

reference system when dealing with area targets and space volumes

which remain inertially fixed. The rotating geocentric coordinate
system (fig. 2-2) will be used when dealing with area targets and

space volumes which rotate with the Earth.

Each of the following six subsections is further subdivided into
three topics:

a. Procedure - a brief description of the steps to be performed.

b. Equations - a statement of the input parameter reguirements
and development of the mathematical equations.

c. Assumptions and limitations - a description of any simplifying
assumptions and/or mathematical restrictions.

For convenience, section 2.7 summarizes the equations for all of
the area targets and space volumes.
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Mean vernal

‘Earth's mean rotational

axis of epoch

equinox of epoch Mean equator
. epoch

NAME:
ORIGIN:

ORIENTATION:

CHARACTERISTICS:

Aries mean-of-1950, Cartesian, coordinate system.
The center of the Earth.

The epoch is the beginning of Besselian year 1950 or Julian
ephemeris date 2433282.423357.

The xM-YM plane is the mean Earth's eguator of epoch.
The Xy axis is directed towards the mean vernal equinox of epoch.

The 2, axis is directed along the Earth's mean rotational axis
of epogh and is positive north,

The Yy axis completes a right-handed system.

Inertial, right-handed, Cartesian system.

Figure 2-l.- Aries mean-o0f-1950 coordinate system.
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t - Yo
X3
True- >f-date
equator
Prime (Greenwich)
meridian
NAME: Geocentric copordinate system
ORIGIN: Center of the Earth
ORIENTATION: XG - YG plane s the Earth's true-of-date equator
XG passes through the Greenwich meridian
ZG is along the Earth's rotational axis

Y completes the right-handed system

CHARACTERISTICS: Rotating, right-handed, Earth-fixed

Figure 2-2.~ Rotating geocentric coordinate system.
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2.1 EARTH-REFERENCED CIRCLES

Earth-referenced circles are defined to be circular ground target
areas whose centers are defined by geodetic latitude, longitude,
anl .ltitude (fig. 2-3). The S/C lies within this ground target
are¢ . if its subsatellite point lies within the perimeter of the

circular area.

2.1.1 Procedure

The following procedure will be used to determine whether the S/C
lie® within the ground target area:

a. The geodetic coordinates of the ground target area will be
transformed to the geocentric system.

b. The S/C position vector will be transformed from the M50
system to the geocentric system.

c. A test will be performed to determine whether the S/C subsat-
ellite point lies within the perimeter of the ground target

area.

2.1.2 Equations
The following parameters are reguired:

¢ and A - geodetic latitude and longitude, respectively, of the
center of the Earth-referenced circle (fig. 2-4)

h - altitude of the Earth-referenced circle, measured with
resvert o the Fischer ellipsoid of 1960 (fig. 2-4)
r, - arc :radius of the Earth-referenced circle (fig. 2-3)
ﬁ;c - S/C position vector in the M50 system (fig. 2-3)
>
t - time corresponding to Rsc
T'NP]ggé - Rotation, nutation, and precession (RNP) matrix which
is used to transform vectors from the M50 system to the
true-of-epoch inertial (TEI) coordinate system
ty - epoch time corresponding to the RNP matrix
ch - mean equatorial radius for the Fischer ellivsoid of 1960
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s/C

Fischer
ellipsoiad

Figure 2-3.- Earth-referenced circle.
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Prime (Greenwich)

‘meridian

NAME ¢

ORIGIN:

ORIENTATION:

CHARACTERISTICS:

True-of-date
equator

-

-— S

Geodetic coordinate system.

This system consists of a set of varameters rather than
a coordinate system; therefore, no origin is specified.

This system of parameters is based on an ellipsoidal model

of the Earth (e.g., the Fischer ellipse of 1960). For

any point of interest we define a line, known as the geodetic
local vertical, which is perpendicular to the ellipsoid

and which contains the point of interest.

h, geodetic altitude, is the distance from the point of
interest to the reference ellipsoid, measuved along the
geodetic local vertical, and is pcsitive for points out-~
side the ellipsoid.

A is the longitude measured in the plane of the Earth's
true equator from the prime (Greenwich) meridian to the
local meridian, measured positive eastward.

¢ is the geodetic latitude, measured in the plane of the
local meridian from the Earth's true equator to the geodetic
local vertical, measured positive north from the equator.

NOTE: A detailed explanation of declination, geodetic
latitude, and geocentric latitude is provided
on figure 2-4(b).

Rotating polar coordinate parameters. Only position vectors
are expressed in this coordinate system. Velocity vectors
should be expressed in the Aries mean-o0f-1950, or the Aries
true-of-date, polar for inertial or quasi-inertial! repre-
sentations, respectively. The Fischer ellipsoid model
should be used with this system.

(a) Basic definitions.
Figure 2-4.- Geodetic coordinate system.
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X:¥s

Plane

NAME: Geodetic coordinate system of point P.

DEFINITIONS: h is the altitude of point P measured perpendicular
from the surface of the referenced ellipsoid.

¢ is the geodetic latitude of point P.
¢C is the geocentric latitude of point P.

§ is the angle between radius vector and equatorial plane
(declination).

A is the longitude of point P, Angle (+ east) between
plane of the figure and the plane formed by the Greenwich
meridian.

(b) Detailed explanation.

Figure 2-4.~ Concluded.
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F - flattening coefficient for the Fischer ellipsoid of 1960
w - Earth rotation rate

The first step is to transform the ground target area from the geo-
detic system to the geocentric system. The vector from the

center of the Earth to the center of the ground target area can

be expressed in the rotating geocentric system by

(h + aF) cos A cos ¢

->
c® .
B = (h + aF) sin )\ cos ¢ (2-1)
[h + (1 -~ F)z aF] sin ¢
where
R
em _
23 > (2-2)

Véosz¢ + (1 - F)2 sin2¢

The second step is to transform the S/C position vector from the
M50 system to the geocentric system. This is accomplished by

a. Transforming the vector from the M50 system to the TEI system

using the RNP matrix.
b. Transforming the resultant vector from the TEI system to the

geocentric system.

The S/C position vector in the TEI system is given by

TET _ TEI _
ﬁsc - |:RI\IP]MSO iisc (2-3)



The S/C poeition vector in the geocentric system (fig. 2-5) is
given by

cos AA sin A 0 |G

26 _ | _.: >TEI -
Rsc = sin AA cos A O Rsc (2~-4)
0 0 1 .TEI
where
AN = Wg (t - te) (2-5)

The final step is to determine whether the S/C subsatellite point
lies within the ground target area (fig. 2-3). The angle from
Eg to the perimeter of the circular ground target area, Ypr

is given (in degrees) by

r
_ c 180 _
‘B
The angle from ag to the S/C, Ygr is given by
G G
_ -1 §sc * EB
Yg = cos §G EG (2-7)
l scl I BI
The S/C lies within the ground target area if
Yg Y (2-8)

2-9



Greenwich meridian

Greenwich meridian at time, t
at epoch time (te) we<:_

XTEI

we(t - te)

Figure 2-5.- Relationship between TEI and
rotating geocentric systems.
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2.1.3 Assumptiors and Limitations

The following assumptions are implicit in the equations presented
in section 2.1.2:

a. The S/C geocentric subsatellite point is used to compute entry
into the ground target area.

b. The effects of polar nutation and precession from time te to
time t can be neglected.

¢. The radius of the Earth-referenced circle, Lor is a

segment of arc.
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2.2 CELESTIAL CIRCLES

Celestial c.rcles are defined to be circular areas on the celestial
sphere (fig. 2-6). The center of this area target is defined by
right ascension and declination. The criterion for a S/C to lie
within this area is for the S/C zenith pvoint to lie within the
perimeter of the celestial circle.

2.2.1 Procedure

The following procedure will be used to determine whethe- < §/C
lies within the celestial circle:

a. The unit vector along the centerline of the celestial circle
will be computed in the M50 system.

b. The dot product between this vector and the S/C position
vector will be formed to determine whether the S$/C lies
within the celertial circle.

2.2.2 Equations

The following parameters are required:

and GA - the right ascension and declination, respectively, of
the centerline of the celestial circle expressed in
the M50 system (fig. 2-6).

- the celestial circle angular radius (fig. 2-6).

N

Ya

sc - S8/C position vector in the M50 system.

The unit vector from the center of the Earth to the center of the

celestial circle, ¢ is given by

Bl
cos o, cos GA
CB = {sin o, cos GA (2-9)
sin op
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Centerline of
celestial circle

Figure 2-6.- Containment test for celestial circles.
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The angle between this vector and the S/C, Ygr is

. F
= cos c. . 3% (2-10)

The S/C lies within the celestial circle if
Yg £ Ya (2-11)

2.2.3 Assumptions and Limitations

None.

2-1¢



2.3 EARTH-REFERENCED POLYGONS

The EBarth-referenced polygon is defined to be an arbitrary planar
figure having up to five sides (fig. 2-7). This figure is fixed
with respect to the rotating Earth. The corner points (i.e.,
vertices) of this polygon are defined by geodetic latitude, longi-
tude, and altitude. The basic criterion for penetration is to
ensure that the S/C subsatellite point lies within the perimeter
of the ground target area.

2.3.1 Procedure

The basic procedure for this ground target area is similar to the
procedure presented in section 2.1.1. It consists of

a. Transforming the geodetic coordinates of each polygon vertex
to the geocentric system. '

b. Transforming the S/C position vector from the M50 system to
the geocentric system.

c. Testing to determine whether the S/C is interior to all
planes defined by the sides of the polygon.

2.3.2 Equations
The following parameters are required:
n - number of sides

¢i and li - geodetic latitude and longitude, respectively, of
each vertex (fig. 2-7)

hi - geodetic altitude of each vertex (fig. 2-7)
ﬁsc - §/C position vector in the M50 system
t - time corresponding to ﬁsc
[RNP]ﬁgg - RNP matrix to transform from the M50 system to the
TEI system
te - epoch time corresponding to the RNP mAatrix
R.em - mean equatorial radius for the Fischer ellipsoid of 1960
F - flattening coefficient for the Fischer ellipsoid of 1960
Wg - Earth rotation rate
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Earth-referenced
polygon

Fischer (1960)
ellipsoid

True-of-date
equator

Greenwich
meridian

Figure 2-7.~ Earth-referenced polygon.
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The first step is to transform the parameters defining each
vertex of the polygon from the geodetic system tc the rctating
geocentric system. These vectors are given by

(hi + aF) cos li cos ¢,

ﬁg = (hi + aF) sin xi cos ‘i i=1,2,3,...n
2 . ‘
[hi +a-P aF]S“‘ %5 (2-12)
where
ap is defined by equation 2-2 with ¢i replacing ¢.

The S/C position vector in the geocentric system, ﬁgc, is then
obtained by using equations 2-3 through 2-5.

The next step in the procedure is to determine whether the S/C
lies interior to all planes defined by the sides of the polygon.
Figures 2-8 and 2-9 illustrate the geometry. All vectors in these
figures are with respect to the geocentric system. The centroid

of the ground target area, Eg, (fig. 2-8) is defined as

n
3
Eg = 5—1-,—;- (2-13)

The unit normal vectors to each side ot the polygon (fig. 2-9) are
given by

e §(i;+1 X ﬁ? .
Ni =i+G ﬁGl i=1,2,3,...n-1 (2-14a)
'R1+1 X i
G G
o B
n - *G G (2"’14b)
IR] X ﬁnl



s/C

horizon

)

Local I

Fischer
ellipsoic

Figure 2-8.- Centroid of Earth-referenced polygons.
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Plane 2

Plane 3

Plane 1

Plane 5

Plane 4

Center of
the Earth

Figure 2-9.- Containment test for Earth-referenced polygons.
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The perpendicular distance from Eg to each polygon side is

- G G _ &G . -
di Ni - (ﬁi EB) l - 1'2'3'0.-n (2 15)

th

The S/C must lie interior to the i plane if
~G G .
N; . pp < 4, (2-16)
where
+G G G ,
= - -1 \
pB §sc EB (2-17

If equation 2-16 is satisfied for all sides, then the S/C sup-
satellite point lies within the perimeter of the polygon.

2.3.3 Assumptions and Limitations

The following assumptions and limitations are implicit in the

equations presented in section 2.3.2:

a. The S/C geocentric subsatellite point is used to determine
entry into the ground target area.

b. The effects of polar nutation and precession from time <c
to t can be neglected. )

c. The vertices of the polygon are specified in a counterclockwise
order as viewed from the top.

d. The polygon is convex; i.e., the interior angles between the
sides defining the vertices are less than 180 degrees.1

e. The angular separation betwsen two consecutive vertices is
sufficient to permit a nonzero cross product (eq. 2-14).

f. The S/C and the ground target area lie in the same hemisphere.
The procedure discussed in section 3 will assure this

condition.

lConcave polygons can be accommodated by subdividing them into
two or more convex polygons. Appendix A discusses this procedure.
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2.4 CELESTIAL POLYGONS

Celestial polygons are defined to be arbitrary figures having up
to five sides with the corner points (i.e., vertices) defined by
right ascension and declination on the celestial sphere. The
criterion for penetration into this area is to ensure that the
S/C zenith point lies within the confines of the polygon. Figure
2-10 illustrates the celestial polygon. It is noted that this
polygon also represents a variable area polyhedron which remains
inertially fixed.

2.4.1 Procedure

The basic procedure for this area target is similar to the proce-

dure presented in section 2.3.1, i.e.,:

a. The unit vector along the "centroid" of the polyhedron will
be computed in the M50 system.

b. Tests will be made to determine whether the S/C is interior
to all planes defineu by the sides of the polyhedron.

2.4.2. Equations

The following parameters are required:

n - number of sides
o and Gi - right ascension and declination, respectively, of each

vertex in the M50 system (i = 1,2,3,...n)

§sc - S/C position vector in the M50 system

The first step is to determine the unit vector along the centroid
of the polyhedron. The unit vectors from the center of the Earth
to each vertex in the M50 system are given by

cos a; cos Gi
Ri ={ sin o, cos Gi i=1,2,3,...n (2-18)
sin §,
i
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Center of Earth.

Figure 2-10.- Celestial polygon.
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The unit vector along the centroid of the polyhedron is

oL (2-19)

12|

where

n -~
2 Ry
_i=1 _
¢ = e (2-20)

The final step is to determine whether the S/C lies interior to all
planes defined by the sides of the polyhedron. Figure 2-11 illu-
strates the geometry. The slant range from C :o the S/C is

> &>

P = Rsc -C (2-21)

Equations 2-14 through 2-16 (with ﬁg, Eg, and Bg replaced by

Ri’ C, and BB' re-pectively) are then used to determine whether

the S/C is interior to all polyhedron planes.

2.4.3 Assumptions and Limitations

The following assumptions and limitations are implicit in the
equations presented in section 2.4.2:

a. The vertices of the polygon are specified in a counterclockwise
order as viewed from the top.

b. The polygon is convex; i.e., the interior angles between the
s .des defining the vertices are less than 180 degrees.l

c. The angular separation between two consecutive vertices is
sufficient to permit a nonzero cross product (eq. 2-14).

d. Tre 8/C and the area target lie within the same hemisphere.
The procedure outlined in section 3 will assure this condition.

1
. Concave polygons can be accommodated by subdividing them
into two or more convex polygons as discussed in appendix A.
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Figure 2-1l.- Containment test for celestial polygons.
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2.5 EARTH-REFERENCED SPACE VOLUMES

The Earth-referenced space volumes are arbitrary polyhedrons
which are defined by a lower-limit polygon at an altitude,

h,, and the projection of this polygon to an altitude, h,. The
vertices of this polygon are defined by geodetic latitude and
longitude and rotate with the Earth. Figure 2-12 illustrates
this type of space volume. As siown, the planar cross sectional
area of this polyhedron remains constant with respect to altitude.

2.5.1 Procedtv e

The following procedure will be used to determine whether th= S/C
lies within the space volume:

a. The geodetic parameters defining each vertex of the lower
boundary will be transformed to geocentric position vectors.

b. The centroid vector to the lower boundary will be computed
in the geocentric system.

c. The S/C position vector will be transformed from the M50
system to the geocentric system.

d. Tests will be performed to ensure that the $/C lies above the
lower boundary and belc: the upper boundary. If either of
these tests fails, then no further computations are re-
quired.

e. Assuming the vrevinus step is passed, tests will be performed
to determine whether the S/C is interior to all planes
defined by the sides of the polyhedron.

2.5.2 Equations

The following parameters are required:

n - number of sides
¢i and Ai - geodetic latitude and longitude, respectively, of
each vertex of the lower boundary
hl - geodetic altitude of the lower boundary

h2 - geodetic altitude of the upper boundary
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R - S/C position vector in the M50 system

tsc - time corresponding to ﬁsc
[RNP]ﬁgg - RNP matrix to transform from the M50 to TEI system
tg ~ epoch time corresponding to the RNP matrix
Rem - mean equatorial radius for the Fischer ellipsoid
of 1960
F - flattening coefficient for the Fischer ellipsoid
of 1960
wg - Earth rotation rate

The first step is to transform the parameters defining each
vertex of the lower boundary to geocentric position vectors.
Equation 2-12 (with hi = 0) provides the necessary transformation.

The centroid of these vectors is given by

(2-22)

The geocentric vector to the centroid of the lower boundary
(fig. 2-13) is given by

o2 I}
¥
(]
()4

(2-23)

(@)4
"
0
+
o3

Next, the S/C position vector in the geocentric systenm, ﬁgc , is

computed using equations 2~3 through 2-5.

The fourth step in the procedure is to ensure that the §/C lies
between the upper and lowar boundaries. Figure 2-13 illustrates
the geometry. All vectors in this figure are with respect to

G

the geocentric system. The slant range from éB to the S/C, Eg,
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Figure 2-~13.- Boundary tests for constant area polyhedrons.
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is given by
os = Ro_ - & (2-24)

The S/C lies above the lower boundary and below the upper boundary
if

sc . 5 i
h2 - h1 > Py IE | >0 (2-25)
B

Assuming that equation 2-25 is satisfied, the final step is to
determine whether the S/C lies interior to the side planes of
the polyhedron. Figure 2-14 illustrates the geometry. The unit
normal vectors from Eg to each side of the polygon are given by

G G G
NG = EB X (ﬁi - Ri+l) =1,2,3 n-1
i ,'éG x ﬁG _ ﬁG ' ] f .o e
B i i+l (2-26a)
o x (8- 1)
NG = _B n 1 (2-26b)
n IEG X ﬁG _ ﬁG |
B ( n 1

Equations 2-15 through 2-17 are then used to determine whether the
S/C is contained within the polyhedron.

When dealing with concave space volumes, using the segmentation
procedure discussed in appendix A, the following procedure must
be follcw=2d to prevent geometric distortion of tiie segments.

a. The centroid of the entire space volume is used for Eg in
equations 2 -24 and 2-25 to test the upper and lower boundary

constraints.
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Figure 2-14.- Containment test for constant area polyhedrons.
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b. The centroia of the entire space volume is also used for Eg
in equation 2-26 to construct the unit normal vectors on a
segment-by-segment basis.

c. The segment centroid is used in equations 2-15 through 2-17
to test for parameter containment.

2.5.3 Assumptions and Limitations

The following assumptions and limitations are implicit in the
equations presented in section 2.5.2:

a. The altitude of the lower boundary, hl, is measured with
respect to the centroid of the vertices which lie on the
Fischer ellipsoid.

b. The effects of polar nutation and precession from time te
to t can be neglected.

c. The vertices are specified in a counterclockwise order as
viewed from the top.

d. The planar area of the polyhedron is convex; i.e., the inter-
ior angles between the sides defining the vertices are less
than 180 degrees.1

e. The local horizon for determining whether the S/C is between
the upper and lower boundaries is perpendicular to the centroid
vector.

f. The distance between two consecutive vertices is sufficient
to permit a nonzero cross product (eq. 2-26).

1Concave polyhedrons can be accommodated by subdividing them
into two or more convex portions as discussed in appendix A.
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2.6 CELESTIAL-FIXED SPACE VOLUMES

The celestial-fixed space volumes are arbitrary polyhedrons
which are defined by a lower-limit polygon at an altitude,

hl' and a projection of this polygon to an altitude, h2. The
vertices of the polygon are defined by right ascension and de-
clination and are inertially fixed. Figure 2-12 can also be
used to illustrate this type of space volume. As mentioned
previously, the planar cross sectional area of this polyhedron
remains constant with respect to altitude.

2.6.1 Procedure

The basic procedure for this space volume is very similar to the

procedure presented in section 2.5.1. It consists of:

a. Computing the centroid vector to the lower boundary in the
M50 system.

b. Testing to ensure that the S/C lies above the lower boundary

and below the upper boundary. If either of these tests fails,

then no further computations are required.

c. Assuming the previous step is passed, further tests will be
performed to determine whether the S/C is interior to all
planes defined by the sides of the polyhedron.

2.6.2 Equations
The following parameters are required:

n - number of sides
a, and Gi - right ascension and declination, respectively, of
each vertex of the lower boundary in the M50 system

hl - altitude of the lower boundary
h2 - altitude of the upper boundary
Rem - mean equatorial radius
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The unit vector to the centroid of the polyhedron, C, is com-
puted via eguations 2-18 through 2-20. The vector to the centroid
of the lower boundary is given by

¢, = (Rem + hl) c (2-27)
. . G *G
Equations 2-24 and 2-25 (with variables Rsc and CB replaced by
§sc and 65. respectively) are then used to ensure that the S/C

lies between the upper and lower boundaries.

Assuminc equation 2-25 is satisfied, equation 2-26 (with Eg

and ﬁg replaced by éB and ﬁi' respectively) is used to
define the unit normal vectors to each side of the polyhedron.
Finally, equations 2-15 through 2-17 are used to determine whether
the S/C lies within the space volume.

When dealing with concave space volumes, using the segmentation
procedure discussed in appendix A, the following procedure must
be followed to prevent geometric distortions of the segments.

a. The centroid of the entire space volume is used for Eg in

equations 2-24 and 2-25 to test the upper and lower boundary
constraints.

b. The centroid of the entire space volume is also used for Eg in
equation 2-26 to construct the unit normal vectors on a
segment-by-segment basis.

c. The segment centroid is used in equations 2-15 through 2-17
to test for perimeter containment.
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2.6.3 Assumptions and Limitations

The following assumptions and limitations are implicit in the
equations presented in section 2.6.2:

a. The altitudes of the lower and upper boundaries are measured
with respect to the mean equatorial radius.

b. The vertices are specified in a counterclockwise order as
viewed from the top.

c. The planar area of the polyhedron is convex; i.e., the in-
terior angles between the sides defining the vertices are
less than 180 degrees.l

d. The distance between two consecutive vertices is sufficient
to permit a nonzero cross product (eqg. 2-26).

1
'Concave polyhedrons can be accommodated by subdividing
them into two or more convex vortions as discussed in aprendix A,
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2.7 SUMMARY OF EQUATIONS

This section summarizes all of the equations presented in the
previous sections for the various area targets and space volumes.
The order of presentation and equation numbers correspond to the

computation sequence discussed in the text.

2.7.1 EBarth-Referenced Circles

(h + aF) cos A cos ¢
E(B;= (h-l-aF) sin A cos ¢
lh + (1 - F)ZaFlsin ¢

where
R
a = em
F 2 2 .. 2.
cos ¢ + (1 - F)” sin“¢
TEI _ TEI
§sc - [RNP]MSO sC
cos AA sin AX O
G _ i +TEIX
ﬁsc = sin AA co AX 0O RSc
0 0 1 JTEI
where

AA =we (t - te)
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r
= c 180 19
Ya = {—|E§|} — (2-6)

G G
_ -1 ﬁsc ’ EB
Yg = cos —_— (2-7)
1%E | 12§
sc B
Yg £ Ya (2-8)
2.7.2 Celestial Circles
cos aA cos SA
CB = sin aA cos GA (2-9)
sin GA
-1\2 §sc
F3
Ys YA (2-11)

2.7.3 Earth-Referenced Polygons

(hi + aF) cos ), cos ¢,

ﬁG = (hi+a

i sin Ai cos ¢4 i=1,2,3,...n (2-12)

e
[hi_+ (1 - F)zaF] sin o,
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where

R
a, = = (2-2)

V4
#coszcbi + (1 - F)2 Sin2¢i

*TEI _ TEI (2-3)
Rsc - [RNP]MSO ﬁsc

cos AX sin AX 0 ]G
>TEI

sc = -8in A\ cos AX O Rsc (2-4)
0 0 1 JTEI>
‘vhere
A = o (t - te) (2-5)

W e
>
]
= Lo

(2-13)

O

G G

5.7 126 4 %6
85, % &

>
@
e
+
=
"
]

1,2,3,...n-1 (2-14a)

6. 1l _n, (2-14b)

-
|

a, = Nf . (ﬁ? - EG) i=1,2,3,...n (2-15)

<4, i=1,2,3,...n (2-16)



where
e = R - & (2-17)

2.7.4 Celestial Polygons

cos o, cos ¢,
i i

Ri = { sin a; cos Gi i=1,2,3,...n (2-18)
sin Gi
Aa_ &
C = — (2-19)
Id

where

¢ = &:%_._. (2-20)
> ~
o, = R, - € (2-21)
) R,., X R,
N,o= 25 - 1,2,3,..0000 (2-142)
R4y X Ry
. R, X R
o= D (2-14b)
lRlXRI
n

4. = N, - (ﬁi - é) i=1,2,3,...n (2-15)

i = 1,2,3,.0.“ (2-16)
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2.7.5

where

where

Earth-Referenced Space Volumes

a_ cos Ai cos ¢i

F
G
Ri = aF

2 &
(1 - F)%ag sin ¢,

Rem

7

Jcoschi + (1 - F‘)2 sin2¢i

&S

1
& = 1=l

-

U]
S

G
&€ =¢+n ol

1 (e

2TEI _ TEI
Rge = [RNP]MSO issc

cos AX sin AX O 1G

G _ |_; TEI
ﬁsc = sin AN cos AX 0 ﬁsc
0 0 1 JTEI
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2.7.6 Celestial-Fixed Space Volumes

cos a. CoOs 6.
i i

R, = {sin a., cos §.
i i i

sin §.
1

where

(2-25)

(2-26b)

1,2,?,..011(2-15)

1'2,3'0-.!1(2-16)

112'3,noon(2-18)

(2-19)

(2-20)
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I.éB X (Ri Ri+1)I
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18, % (R, - Ry) |
ﬁi (ﬁi 613)
Ny bg <4y
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.0 SEMIANALYTICAL ALGORITHM TO PREDICT AOS AND LOS TIMES

This section presents a semianalytic technique for predicting A0S
and LOS times. This technique is designed to bound the actual
visibility periods and uses a simplified geometry model in con-
junction with unperturbed orbital motion. 1Its principal purpose
is to reduce the burden on the precise numerical search by
eliminating ro~.ons of the S/C orbit where A0S and LOS times are
physically impocsible.

The basic procedure consists of the following:

a. Determining the parameters of an outer boundary cone which
circumscribes the entire area target or space volu—e.

b. Determining whether the orientation of the S/C orbit plane
will permit any intersections of the outer bcundary cone
with the S/C orbit plane.

c. Assuming intersections are possible for the following:

(1) Celestial-fixed targets
(a) Compute the conic intersection voints of the outer
boundary cone with the S/C orbit plane.
(b) Compute predictions of AOS and LOS times

( “nos,
revolution based upon these intersection points.
(2) Earth-fixed targets
(a) Compute the time of closest approach (TCA) of the

'S/C position vector with the centerline of the

and tLOSK' r?spectively) for each

outer boundary cone and the corresponding closest
approach angle (YCA)' These computations are
performed on a revolution-by-revolut._.on :..isis.

(b) 1If Yea is less than or equal to the half-cone
angle of the outer boundary cone, then compute
predictions of AOS and LOS times based upon the
times when the S/C lies on the perimeter of the
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outer boundary cone. These times are denoted by

t and t .
A.OSK LosK

After the A0S and LOS time predictions are determined, the precise
numerical search (using the detailed area target ané space
volume geometry model discvssed in sec. 2) can then be performed

to tLOS .

over the reduced time regions from tA
OSg X

S

The following parameters are required to predict the A0S and LOS times:

tstart - start time for the search
tend - end time for the search
At - time increment for the search. For the purposes of

this algorithm, At will be used as a tolerance for
converging upon the A0S and LOS times for Earth-
referenced targets.

§sco - S/C position vector in the M50 system at tstart‘

b= - -

Vsco - S§/C velocity vector in the M50 system at tstart'

[RNP]ﬁgg - RNP matrix to transform from the M50 to the TEI
system.

te - epoch time corresponding to the RNP matrix.

The following subsections provide the necessary equations.

Section 3.1 discusses the computation of the outer boundary cone
parameters. Section 3.2 discusses the technique to determine
whether any AOS or LOS times are possible. Section 3.3 presents
the equations to predict A0S and LOS times. Section 3.4 discusses
the assumptions and limitations implicit in these equations.

Two reference coordinate systems are used in these computations.
The M50 coordinate system is used when dealing with celestial-
fixed targets and the TEI system is used for Earth-referenced
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targets. The TEI system was selected for Earth-referenced targets
in order to model the effects of polar nutation and precession
on the Earth's spin axis. The Z axis of the TEI system is aligned
with the Earth's spin axis at the epoch time of the RNP matrix.

Cor celestial-fixed targets, the M50 Keplerian elements (a, e,

i, 2, w and Mo) at the start time will be computed from ﬁsc

> o)
and Vsc .

o

For Earth-referenced targets, the TEI Keplerian elements at the
<> TEI

start time will be computel from Rsc and 3:51 where
o o
TEI TEI
SRl E b (-1
o o
STEI _ TEI _
Vsco - [RNP]MSO i;sco (3-2)
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3.1 COMPUTING OUTER BOUNDARY CONE PARAMETERS
The outer boundary cone is defined by

a, - right ascension of the centerline

¢ = latitude of the centerline

Yp half-cone angle
For Barth-referenced targets these parameters will be defined in

the TEI system at t For celestial-fixed targets, these

start’
parameters will be defined in the M50 system and remain invariant
with respect to time.

3.1.1 EBEarth-Referenced Circles

The unit vector along the centerline of the cone is given in the
TEI system by

cos A - sin AX O |TEI EG

CTEI = | sin AX cos AX O *? (3-3)
Icy |
0 0 1 G B
where
*>G . . .
CB is given by equation 2-1

AX is given by equation 2-5 with t equal to tstart

Thus, the right ascension and latitude of the centerline is given
in the TEI system (at the start of the search) by

CTEI

(o) TEI (3-4)

lThe TEI system is selected for Earth-referenced targets in
order to model the polar nutation and precession from M50 reference
to the evoch time of the RNP matrix.
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¢_ = sin”! {cTEI} (3-5)

(o] 2
where
“TEI TEI TEI TEI
=
C (Cx ,Cy,Cz)

The half-cone angle, Yar is given by equation 2-6.

3.1.2 Celestial Circles

The richt ascension, latitude, and half-cone angle in the M50
system ar: given via input

Qy = a (3-6)

0o = & (3-7)

3.1.3 Earth-Referenced Polygons

The unit vector along the centerline of the outer boundary cone is
given in the TEI system by equation 3-3 where equation 2-13 is used
to compute Eg. Egquations 3-4 and 3-5 are then used to compute
ag and ¢o' respectively. The outer boundary cone is centered
along the centroid vector and has an angular radius which contains
the vertex furthest from the centrcid vector (fig. 3-1). Thus,
the half-cone angle is given by

RS - €

YA = max cos—1 ;é———;g— i=1,2,3,...n (3-8)
IRJ [cgl

where
max implies the maximum algebraic value

§? is given by equation 2-12.
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Earth-referenced

polygon Earth-referenced

polygon

Vertex furthest from
centroid

Center of Earth

Figure 3-1.- Circumscribing polygons.
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3.1.4 Celestial Polygons

The unit vector along the centerline of the celestial polygon is
givea by eguation 2-19. Equations 3-4 and 3-5 (with ETEI replaced
by C) are then used to compute PR and ¢o' respectively. The
half-cone angle which contains the vertex furthest from the centroid

is given by

Yp = max [cos-l Ri - C i-= 1,2,3,...n] (3-9)

where
R. is given by equation 2-18.

1

3.1.5 Earth-Referenced Space Volumes

The unit vector along the centerline of the outer boundary cone
for Earth-referenced space volumes is given by equation 3-3 with

Eg replaced by &C (eq. 2-22). Equations 3-4 and 3-5
are then used to compute a, and ¢o' respectively. Since the

Earth-referenced space volume represents & constant area pclyhedron
(sec. 2.5), the outer boundary cone to be used for predicting AOS
and LOS times circumscribes the space volume planar area at the

S/C altitude. However, for noncircular orbits, the S/C altitude
varies as a function of time and thus the size of the outer
boundary cone would also vary as a function of time. The size of
the cone is largest at verigee and smallest at apogee. Since the
purpose of the outer boundary cone is to bound the actual visibility
region, the half-cone angle at the S/C perigee altitude will be
computed and held constant with respect to time. The vector from
the center of the Earth to each vertex gf the space volume pro-
jected to the S/C perigee altitude, ﬁg , (fig. 3-2) is given by

G
ﬁci;' - ﬁg + [Rp - lEgl] ng—T i=1,2,3,...n(3-10)
B
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Figure 3-2.- Circumscribing space volumes.



where

ﬁ? is given by equation 2-12
is given by equation 2-23
Rp is the S/C perigee radius

= a(l - e) (3-11)

Thus the half-cone angle which contains the vertex furthest from
the centerline of the cone is given by

G~ 3
1. g

1B IES |

= max cos”1 i=1,2,3,...n (3-12)

Ya

3.1.6 Celestial-Fixed Space Volumes

The unit vector along the centerline of the outer boundary cone
for celestial-fixed space volumes is given by equation 2-19.

Equations 3-4 and 3-5 (with CTEI replaced by 6) are then used
to compute o, and ¢, respectively. Since the celestial-fixed

space volume also represents a constant area polyhedron (sec. 2.6),
the outer boundary cone to be used for predicting A0S and LOS times
circumscribes the space volume planar area at the S/C perigee
altitude (sec. 3.1.5). The vector from the center of the Earth to
each vertex Hf the space volume at the S/C perigee altitude,

»

2 . .
Ri , 15 aqiven by

R, =R, + [R - |cB|] c (3-13)



where

ﬁi is given by equation 2-18

EB is given by equation 2-27

Rp is the S/C perigee radius

(equation 3-11)

Thus
R N
= max cos-l . C
YA §,
1%

3-10

is= 1,2'3,000n
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3.2 DETERMINING WHETHER AOS AND LOS TIMES ARE POSSIBLE

The following computations will determine whether the relative
orientation of the S/C orbit plane and the outer boundary cone
will permit any intersections between these two figures. If no
intersections are possible, then no A0S or LOS times are possible.
Since the Earth-referenced targets rotate with the Earth and the
celestial-fixed targets remain inertially fixed, two different
types of tests are required. The celestial-fixed situation is
the simplest and is discussed first.

3.2.1 Celestial-Fixed Targets

Figure 3-3 illustrates a celestial-fixed outer boundary cone and
a S/C orbit plane. The S/C orbit plane is perpendicular to the
unit angular momentum vector which is given by

sc X vsc
h = o £ (3-15)
Bge, % Vo |
o) o
where
ﬁsc and vsc are the §/C position and velocity vectors, re-
o) o

spectively, in the M50 system at the beginning
of the search.

The centerline of the outer boundary cone, C, is given in the
M50 system by

cos ao cos ¢o
C = {sin @, cos ¢o (3-16)
sin ¢0
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Figure 3-3.- Intersection of celestial-fixed
outer boundary cone with S$/C orbit plane.
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where

aq and ¢° were computed using the procedure discussed in
section 3.1.

The intersection points of the outer boundary cone with the S/C
orbit plane are denoted by I1 and 12 on figure 3-3. These
vectors can be found by solving the following conic intersection

equations1

h+I=0 (3-17a)
6 . i = CO8 Y, (3-17b)
; . i =1 (3-17¢)

These equations provide 0, 1, or 2 solutions for i. If no
solutions are produced, then the relative oriencation of the
outer boundary cone and the S/C orbit plane does not permit
intersections, and no AOS or LOS times are possible. If only
one solution is produced, the A0S and LOS times are the same.

If two solutions are produced, the A0S and LOS times predictions
are made using the method outlinzd in section 3.3,

lThe method for solving these equation. is presented in
appendix B.
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3.2.2 Earth-Referenced Targets

Figure 3-4 illustrates an Earth-referenced outer boundary cone
at a particular instant of time. This cone rotates about the
Earth's polar axis. Hence, over one sidereal day. the volume of
space swept out by the outer boundary cone describes a spherical
sector whose upper and lower limits are determined by Ya and
¢o (fig. 3-5). Intersections of the S/C orbit plane with this
volume of space are possible only if the S/C orbit inclination
exreeds the lower limit of the spherical sector.

For posigrade and polar orbits, the S/C orbit plane will intersect

the spherical sector only ifl

iz o l = vy (3-18a)

For retrograde orbits, intersections are possible only ifl

180 - i > |¢°| = Yp (3-18b)

where

i is the S/C orbit inclination in the TEI system

If equation 3-18 is not satisfied, then no intersections are
possible and thus no A0S or LOS times are possible. If equation
3-18 is satisfied, then the approach presented in section 3.3 is
used to predict A0S and LOS times.

—

The absolute value sign is used in these equations to ac-
commodate targets in both the northern and southern hemispheres.
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Figure 3-4.- Earth-referenced outer boundary cone.
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Figure 3-5.- Spherical sector swept out by Earth-
referenced outer boundary cone.

3~16



3.3 PREDICTING AOS AND LOS TIMES

The following subsections present the eguations necessary to
predict AOS and LOS times for celestial-fixed and Earth-referenced
targets. These equations assume that the tests performed in
section 3.2 have indicated that intersections of the outer boundary
cone with the S/C orbit plane are possible.

3.3.1 Celestial-Fixed Targets

~

The intersection vectors, I1 and I2 (sec. 3.2.1), can be
used directly to predict the AOS and I(S times. Figure 3-6
illustrates the geometry. The unit vector in the direction of

the ascending node, Q, is given by

cos
Q@ = }sin@ (3-13)

0

where

8 = right ascension of the ascending node in the M5S0
system

The angles between Q and the two intersection vectors are given
by

-1 h. (@ X Il) (3-20a)
ul = tan A ~
Q - I1
h .« (@ X I,) (3-20b)
-1 2
u2 = tan Py ~
Q- 12
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Celestial sphere

Figure 5-6.- Definition of intersection points.
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One of these angles corresponds to the AOS point and the other to
the LOS point. The appropbriate angle can be determined by noting
that the visibility period must be less than or equal to one half
of the orbit.

Thus let
_ h . (I, X 1)
% = tan" L 1 2 (3-21)
I1 . I2
If K> 0
UYaos T W (3-22a)
Uros = Y2 (3-23a)
If K < 0
Yaos = Uy (3-22b)
Uios T Y (3-23b)
The true anomalies of the A0S and LOS points are given by
f -w (3-24)

a0S/L0S ~ “A0s/LOS
where
w is the argument of perigee of the S/C orbit

These can be convertea to AOS and LOS times by

: _ Yaos/Los
AOS/LOS -~ T .
M

+ 1 (3-25)

where

M - e sin E (3-26)

Aos/Los - E

AOS/LOS AOS/LOS
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' £
= -1 - e AOS -
Eros/ros = 2 tan 41 T tan '_—éL_Os ‘ (3-27)

M= 2%2 (in degrees per unit of time) (3-28)
a3
T=2m45 (3-29)
Mo
T=tgare T + R- 1) T (3-30)
M

R is the period number measured with respect to

tstart

a is the semimajor axis of the S/C orbit
e is the eccentricity of the S/C orbit

Mo is the S/C mean anomaly at tstart

u is the gravitational constant

Since both the orbit piane and the celestial-fixed target remain
Uaog and Uyng Temain constant. Thus, the
A0S and LOS times for future revolutions differ by only the
orbital period. The A0S and LOS times for the subsequent N

revolutions are given by :

inertially fixed,

t =t + T K=1,2,3...N (3-31)
AOS/LOSK+1 AOS/LOSK
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3.3.2 Earth-Referenced Targets

Computation of AOS and LOS times for Earth-referenced targets is
somewhat more complicated than for celestial-fixed targets since
the orientation of the Earth-referenced target varies as a func-~
tion of time. The following procedure will be used to estimate
the AOS and LOS times:

a. The TCA of the center of the Earth-referenced outer boundary
cone with the S/C position vector will be determined along
with the corresponding closest approach angle, Yoa* These
computations will be performed on a revolution-by-revolution

basis.

b. The closest approach angle from the previous step will be
compared with y,. If vy, > v,, then no A0S or LOS times
are possible for that revolution, and the previous step will

Yea < Ypr then

A0S and LOS times will be computed by solving for the times

be repeated for the next revolution. If

when the angle between the center of the outer boundary cone
and the S/C position vector is equal to Ype

3.3.2.1 Determining TCA

The closest approach point occurs when the S/C position vector
and the center of the outer boundary cone lie in the same henmnis-
phere and are coplanar (fig. 3-7). Both the S/C and the center
of the outer boundary cone are moving with time. The center of
the cone is rotating about the Earth's 2 axis at the Earth's
rotation rate. The S/C is moving about the orbit angular momen-

tum vector at a rate which is dependent upon both the orbit period

and eccentricity. As a result, the TCA cannot be analytically
determined for noncircular/nonequatorial orbits. The TCA can,
however, be determined iteratively by the following:

3-21



Z
(;:5 wg Outer boundary cone
centerline at TCA

>

S/C position at
TCA

Equatorial
vlane

Ascending node
vector

Figure 3-7.- Closest approach print.
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Estimating the closest approach point (for the first revolu-
tion, this estimate would be based upon tstart’ for sub-
sequent revolutions, this estimate would be based upon the
TCA of the previous revolution plus one orbital period).

Determining the time at which the S/C will reach this point.

Updating the closest approach point based upon the time
estimate from the previous step.

Repeating the two previous steps until the difference in
time between two successive iterations is less than or equal
to the time step, At.

The following discussion develops the equations necessary to
compute the TCA.

The unit vector from the center of the Earth to the center of

the outer boundary cone is given by

COS o COS ¢0

where

C = {sin a cos ¢o (3-32)
sin ¢
@ = ag + we(t - tstart) (3-33)

e is the right ascension of the centerline at t
(sec. 3.1)

start

we is the Earth rotation rate

¢° is the latitude of the centerline (sec. 3.1)
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The closest approach point, Top! Occurs when

; _hxcC ~
Yea ‘l;‘;‘g, x h (3-34)

~

where h is the angular momentum vector in the TEI system
(computed via eq. 3-15 using RTEI and VTEI from
sc, sc,

egs. 3-1 and 3-2).

The angle from the ascending node to this point, u.,, is given
by

|
et
o )
L]
—
D>
»?
>

O
L[]
>

(3-35)

where Q 1is computed by equation 3-19 using the right ascension
of the ascending node in the TEI system.

The TCA, tCA' is then given by

fCA = ug, Tow (3-36)
E. =2 tan ® {4178 tan 595 (3-37)
CA T+e 2
MCA = ECA - € sin ECA (3-38)
M
Ca
=——-—+ -
tCA - T (3-39)
M
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where

T 1is given by equation 3-30
M is given by equation 3-28
e is the orbit eccentricity
w 1is the argument of perigee

This time wou}d then be used in equations 3-32 and 3-33 to update
the value of C. Equations 3-35 through 3-39 would be repeated

until the value of tCA between two successive iterations 1S

less than or equal to the time step, At. After the TCA has been

found, the corresponding closest approach angle, Yon’ would be
computed.

The unit vector from the center of the Earth to the S/C is given
by
R cos  cos u - sin @ sin u cos i
r = {sin Q cos u + cos Q sin u cos i (3-40)
sin u sin i

The closest approach angle is given by

(3-41)
CA CA

where
~

Ioa is given by equation 3-490 evaluated at Uca

CCA is given by equations 3-32 and 3-33 evaluated

~

at tCA'
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If Yea is greater than the outer boundary cone angle, Ya
(sec. 3.1), then no AOS or LOS times are possible for this
revolution. In this event, the procedure outlined is repeated
for the next revolution. The initial estimate of TCA for the
next revolution would be equal to the TCA for the current re-
volution plus one orbital period. The process continues until
either Yea < Ya or the TCA exceeds the end time of the search,
tend‘ If Yca < Yar estimates of A0S and LOS times are made
using the method outlined in section 3.3.2.2.

3.3.2.2 Determining AOS and LOS Times

After a feasible TCA has been found, the AOS and LOS times can
be computed by solving the following equations.

~ ~

r - C = cos YA (3-42)

Substituting equations 3-40 and 3-32 into this expression and
simplifying yields

cos (8 - o) cos ¢o cos u - sin (2 - o) cos ¢o cos 1 sin u

+ sin 9 sin i sin u = cos v, (3-43)

Equation 3-43 cannot be explicitly solved for time for noncircular/
nonequatorial orbits. However, this equation can be solved
numerically using the method of successive substitution. For
convenience, equation 3-43 can be rewritten as

A, cos u + B1 sin u = C1 (3-44)
where
= - -45
Al cos ¢o cos (f a) (3-45)
= sgi in 1 - i si Q - -
Bl sin ¢o sin i cos ¢o cos i sin ( o) (3-46)
Cl = Cos Y, (3-47)
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Assuming o is constant between iterations, equation 3-44 has
the following solution

Yaos/Los = tan

The minus sign will produce AOS solutions and the plus sign will
produce LOS solutions. The procedure is as follows:

a. Solving for AOS times, tAOS

(1) Use initial estimate of taos = tcac

(2) Compute Al' Bl' and Cl using equations 3-33, 3-45,
3-46, and 3-47.

(3) Compute "a0S using equation 3-48 with the minus sign.

(4) Compute revised estimate of AOS time using equations
3-24 through 3-30.

(5) If the change in time from the previous iteration is
less than At, then a solution has been found. Other-

wise, repeat steps (2) through (5) with the revised time
estimate.

b. Solving for LOS time, tLos

The solution for LOS time is similar to the procedure for
AOS time except that

(1) The initial estimate of LOS time in step a(l) is given
by

tios = tCA + (tCA - tAOS) (3-49)

(2) W o is computed in step a(3) by using equation 3-48
with the plus sign.
(3) The revised estimate of LOS time is produced in step a(4).



The computations discussed in this section are performed for
each revolution in which Yea was found *o be less than or equal
to Yar In the special case where Yea is exactly egual to Ypr
the A0S and LOS times are identical and equal to the TCA. Hence
computation of AOS and LOS times c>n be bypassed.



3.4 ASSUMPTIONS AND LIMITATIONS

The following assumptions are implicit in the equations presented
in sections 3.1 through 3.3.

a. Unperturbed orbital motion over the time period t_ . > t >
tstart.
b. The effects of polar nutation and pracession rrom t, to
t can be neglected.

end
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4.0 FUNCTIONAL OVERVIEW OF AOS AND LOS TIME COMPUTATIONS

This section provides a functional overview of the ATSVP. The
overa.l procedure for determining precise AOS and LOS times is
presented and discussed. The basic procedure consists of
predicting the AOS and LOS times using the algorithm presented

in section 3 and then refining these predictions by performing

a sequential time search using the equations presented in section 2.

The AOS times are defined to be the time point at which the S/C
first enters the area target or space volume. If the S/C lies
within the area target or space volume at the beginning of the
user-specified search period (tg,., ). the first AOS time will

be set equal to the start time. LOS times are defined to be

the last time point prior to the S/C exiting the area target

or space volume. If the S/C lies within the area target or space
volume at the end of the user-speciiied search period (tend)' then
the last LOS time will be set equal to the end time. It should
be noted that the time increment used to perform the sequential
time search will limit the accuracy and resolution of the A0S

and LOS times (e.g., if the time increment is 1 minute, this
implies that the A0S and LOS times will be determined to the
nearest minute and that visibility periods of less than 1 minute

may be skipped).

The area targets and space volumes defined in section 1 fall into

two general categories:

a. Earth-referenced which include

(1) Earth-referenced circles.

(2) Earth-referenced polygons.

(3) Earth-referenced space volumes.
b. Celestial-fixed which include

(1) celestial-fixed circles.

(2) celestial-fixed polygons.

(o) celestial-fixed space volumes.
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The logic for ccaputing the A0S and LOS times for each of these
categories is presented in the following subsections.

4.1 EARTH-REFERENCED AREA TARGETS AND SPACE VQLUMES

Figure 4-1 provides a functinnal flowchart for the Earth-refer-

enced area targets and space volumes. The reguired inputs are

a.

b.

c.

Target table (eith.r the grouna target, ground polygon, or
ground-fixed space volume table).
Target ID.

Start and end times and time increment (t ., and

start’ tend
At, respectively).

S/C ephemeris and ephemeris ID.
RNP matrix and associated epoch time.

A brief description of the process is provided herein. The

heading numbers correspond to the numbered blocks on figure 4-1.

1.

2.
3.

The geodetic parameters defining the area target or space
volume are obtained from the appropriate target table based
upon the input target ID. Sections 2.1.2, 2.3.2, and 2.5.2
describe the specific parameters which are required.

The RNP matrix and its associated epoch time are obtained.
The geodet’'c coordinates of the area target or space volume
are transformed to the rotating geocentric coordinate system
(secs. 2.1.2, 2.3.2, and 2.5.2).

The number of visib.lity periods between ¢t and tend

are determined along with predictions of ASZtZiE LOS times.
Section 3 describes this process.

A test is periormed to determine whether any visibility
periods were found. If this test is failed, then no AOS/LOS
t mes are possible and processing is terminated.

A loop is established which will process each visibility

period found tep 4.
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100

ll.

The current time, t, is initialized to the AOS time predict-

ion, The initial value of the precise AOS time, AOS;.

t -
A0S
is set fo K zero. The AOS/LOS counter, i, is initialized
to one.

A loop is established which will terminate when t exceeds

the LOS time prediction, tLOSK'

The S/C position vertor (at time t in the M50 system) is
obtained from the ephemeris file based upon the ephemeris ID.
The S/C position vector is transformed to the rotating geo-
centric system and computations are performed to determine
whether the S$/C lies within the area target or space volume

(secs. 2.1.2, 2.3.2, 2.5.2, and app. A).

Based upon the results of these tests, the S/C visikility

parameter, V, is set

Vv > 0 if the S/C lies within the area target or space

volume

V < 0 if the S/C lies exterior to the area .urget or
space volume
A test is performed on V.

If v>0
11.1 a further test is performed on AOSi to determine
whether the S/C was also visible during one or more

of the previous time steps.
If AOSi >0

11.1.1 then the S/C was visible during one or more
of the previous time steps. Hence, no transi-

1Depending upon the target geometry and the S/C groundtrack,

multiple AOS/LOS times could occur during a single visibility period.
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tion has occurred. The current time is incre-
mented by At and the search continues.

If AOSi <0

11.1.2 then a transition into the area target or
space volume has occurred. The current AOS
time, AOSi, is set equal to the current time.
The current time is incremented by At and
the search continues.

If V<O
11.2 a further test is performed on AOSi to determine whether
the S/C was visible during the previous time step.

If A0S, > 0

11.2.1 then the S/C was visible during the previous
time step and a transition out of the area
target or space volume has occurred. The
current LOS time, LOS; , is set equal to the
time of the previous time step (t - At). The
AOS/LOS counter, i, is incremented by one.
The next 20S time is initialized to zero. The
current time is incremented by At and the search
continues.

11.2.2 the S/C was not visible during the preceding
time step. Thus no transition has occurred.
The current time is incremented by At and the

search continues.

12. At the completion of the sequential time search, a last is
made to determine whether the S§/C was visible at the end time.

If the test is true, the last LOS time is set equal to tLOS .
K

4.2 CELESTIAL-FIXED AREA TARGETS AND SPACE VOLUMES

Figure 4-2 illustrates the logic flow for the celestial- fixed
area targets and space volumes. This logic is sirmilar to the
approach presented in section 4.1. The required inputs are
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a. Target table (either celestial circles, celestial polygons,
or celestial-fixed space volumes table).
b. Target ID.

c. Start and end times and time increment (t tend’ and

start’
At, respectively).

d. S/C ephemeris and ephemeris 1ID.

A brief description of the process is provided herein. The
heading numbers correspond to the numbered blocks on fiqure 4-2.

l. The parameters defining the celestial-fixed area target or
space volume are obtained from the appropriate target table
based upon the input target ID. Sections 2.2.2, 2.4.2, and
2.6.2 describe the specific parameters which are required.

2. The number of visibility periods between t and ten

start d
are determined along with predictions of A0S and LOS times.

Section 3 describes this process.

3. A test is performed to determine whether any visibility periods
were found. If this test is failed, then no A0S/LOS times
are possible and processing is terminated.

4. A loop is established which will process each visibility
period found in step 2.

5. The current time, t, is initialized to the AOS time prediction,
tAOS . The initial value of the precise AOS time, AOSI, 1s
K

set to zero. The AO0S/LOS counter, i, is initialized to one.l

6. A loop is established which will terminate when t exceeds

the LOS time prediction, tLOSK'

7. The S/C position vec :r (at time t in the M50 system) is
obtained from the . i:meris file based upon ephemeris ID.

8. Computations are performed to determine whether the S/C lies
within the area target or space volume (secs. 2.2.2, 2.4.2,

1Depending uoon the target geometry and the S/C groundtrack,
multiple AOS/LOS times could occur during a sinale visibility
period.
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2.6.2, and app. A). Based upon the results of these tests,
the S/C visibility parameter, V, is set

V > 0 if the S/C lies within the area target or

space volume

V < 0 if the S/C lies exterior to the area target

or space volume

9. A test is performed on V.

If v>0 .
9.1 a further test is performed on A.OSi to determine whether
the S8/C was also visible during one or more of the previous
time steps.

If AOSi >0

9.1.1 then the 5/C was visible during one or more ot
the previous time steps. Hence, no transition
has occurred. The current time is incremented
by A4t and the search continues.

If A0S, < 0

9.1.2 then a transition into the area target or space

If v<O

9.2

volume has occurred. The current A0S time, AOSi,
is set equal to the current time. The current
time is incremented by At and the search continues.

a further test is performed on AOSi to determine whether

the S/C was visible dur‘ng the previous step.

If AOSi >0

9.2.1

then the S/C was visible during the previous time
step and a transition out of the area target or
space volume has occurred. The current LOS time,
LOSi, is set equal to the time of the previous
time step (t - At). The AOS/LOS counter, i, is



100

incremented by one. The next AOS time is initial-
ized to zero. The current time is incremented by
At and the search continues.

9.2.2 the S/C was not visible during the preceding time
step. Thus, no transition has occurred. The
current time is incremented by At and the search
continues.

At the completion of the sequential time search, a test is
made to determine whether the S/C was visible at the end
time. If the test is true, the last LOS time is set equal

to t .
l'..OSK
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5.0 DETAILED LOGIC FLOW

Figure 5-1 presents the detailed logic flow for the area targets

and space volumes processor. This flowchart integrates the

functional overview presented in section 4 with the equations and

approach presented in sections 2 and 3 and the avppendixes.

Annotations are provided on the flowchart to describe the comput-
ations and tests that are performed. 1In order to simplify

figure 5-1, several notations have been used to represent corre- -
sponding FORTRAN functions, e.g.,

¢ (1)

R(1)

N(J,I)

™=
]
[

N

¢
i
[

represents an array of longitudes indexed by

the variable 1I.

represents a two-dimensional array [i.e., R(3,5)] in
which the first dimension reprasents the Cartesian
components of the vector and the second dimension is
indexed by the variable 1. Hence, operations involving
vector quantities imply a "DO loop" on the innermost
dimension.

represents a three-dimensional array [i.e., N(3,5,3)]

in which the first dimension represents the Cartesian
components of the vector and the second and third
dimensions are indexed by variables J and I, respectively.
Operations involving these vector quantities also imply

a DO locp on the innermost dimension.

implies summation over the indicated range using the
variable specified by the lower bound (e.g., the variable
L will be vsed tc perform the summation over the range
L=1 to L=K-1). '



Initialize
NSICES = 1
NSEG =
h(I) =
(I =1,2

1
0
+3,4,5)

A

Obtain search
control parameters
tstart' tend' At

Target ID
Ephemeris ID

¥

Obtain target parameters

a. Earth-referenced circles
(1), (1), hQ(l), r

b. Celestial circles
a{l), &Q), Ya

c. Earth-referenced polygon
NSIDES, NSEG, VO(J)
(3 =1,2,...NSEG)
$(I), A(I), h(I)
(r =1,2,...NSIDES)

d. Celestial polygon
NSIDES, NSEG, VO (J) Target
(J =1,2,...NSEG) ' table
al(I), &6(I)
(I=1,2,...NSIDES)

e. Earth-referenced space
volume
NSIDES, NSEG, VO(J)
(J =1,2,...NSEG)
o (1), A(I), hll hz
(I=1,2,...NSIDES)

£f. Celestial space volume
NSIDES, NSEG, VO(J)
(J = 1,2,...NSEG)
G(I)r G(I’I hl' hz

(I =1,2,...NSIDES)

c

then |
v 1
If . | Compute
Target is vectors
Earth~referenced to each

else.D vertex

y

3

Figure 5-1.- Detailed flowchart.
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Figure 5-1.- Continued.
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Figure 5-1.- Continued.
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Figure 5-1.- Continued.
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Initialize

then 11
Compute AO0S/LOS
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fixed else .
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NREV = O EXIT in user-specified
search period
then EB = k1) Compute centroid
[T
Target is a
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ordering integer

else
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DO boundary centroid,
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Figure 5-1.- Continued.
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»
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Figure 5-1.- Continued.
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Determine AQS/LOS
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IF
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_ -1 1-e LOS ‘
ELOS 2 tan LTTE tan ( 5 )
Maos = Enps = © sin (Epqq)
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Figure 5-1.- Continued.
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taos (REV) = tao
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A
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iF

tpos (NREV) > t_

k4

IF h
\f then
iLOS(NREV) < ti:i;t
y
IF
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Figure 5-1.- Continued.
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Figure 5-1.- Continued.
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Figure 5-1.- Continued.
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Figure 5-1.- Continued.
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then

=

2, 1) = BRI x A1)
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else
R Cr, x o
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else
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APPENDIX A

SUBDIVIDING CONCAVE POLYGONS



SUBDIVIDING CONCAVE POLYGONS

This appendix discusses the procedure for subdividing complex
concave polygons into two or more simpler convex segments.1 The
purpose of this subdivision process is to permit the equations in
section 2 to be used on a segment-by-segment basis to test for
containment. The criterion for the S/C (or S/C subsatellite
point) to be contained in the concave area target or space volume
is that it must be contained in any one of its segments. For
convenience, the equations and figures presented in this appendix
wili use a pentagon as an example.2 However, this approach is
easily extended to any n-sided polygon.

Figure A-1 presents three examples of concave pentagons. Figure
A-1(a) illustrates a pentagor having one concave vertex. Figures
A-1(b) and A-1l(c) illustrate pentagons having two concave vertices.
These pentagons can always be subdivided into triangles by select-
ing an "appropriate” vertex and connecting nonadjacent vertices
(fig. A-2). The maximum number of triangles necessary to completeiyv
subdivide any a-bitrarily shap2d polygon is

Nsegmax =n - 2 (a-1)

wherea

n = number of sides

lA concave polygon is defined to be a polygon that has one or
more interior vertex angles exceeding 180 degrees. A convex
polygon is defined to be a polygon that has all of its interior
angles less than 180 degrees.

2This corresponds to the maximum number of sides specifically
addressed in the requiremen defined in reference 1.



2 4

(a) One concave vertex.

4

(b) Two adjacent concave vertices.

1
(c) Two nonadjacent concave vertices.

Figure A-1.- Examples of concave pentagons.

A=-2



&) One concave vertex.

4

(b) Two adjacent concave vertices.

1
(c) Two nonadjacent concave vertices.

Figure A-2.- FExamples of subdividing concave pentagons.
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Furthermore, the maximum number of interior angles exceedin:, 180
degrees can also be determined by noting that the sum of the
interior angles of the polygon must be equal to the sum of the
interior angles of all triangles into which it can be subdivided.
Thus, the sum of the interior vertex angles for any arbitrarily
shaped polygon is given by

Z v; = (n - 2) 180 (A-2)

where
Y; < interior vertex angles of the polygon

Thus, the maximum number of interior vertex angles exceeding 180
degrees, <vY*, is given by

N = = 3) (a-3)

This equation limits the maximum number of concave vertices for a
pentagon to two. Figures A-1(b) and A-1l(c) illustrate two ex-
amples. In figure A-1(b), the two concave vertices are adjacent
+to each other. 1In figure A-1l(c), the two concave vertices are non-
adjacent.

The selection of the "appropriate” vertex to begin the subdivision
process is highly derendent upon the shape ox the polygon and the
number and relationship of the concave vertices. Also, it is not
always necessary to subdivide the polygon into triangles. Figure
A-3 illustrates another method for subdividing the pentagon of
figure A-1(a). In this case, the concave pentagon is subdivided
into a four-sided convex polygon and one triangle. Furthermore,
figure A-1l by no means exhausts all of the potential ventagon
shapes that couid be constructed.

A-4



Figure A-3.- Alternate subdivision.
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Since the shape of the area targets and space volumes will remain
static during a mission, it is recommended that the subdivision
process be performed manually.1 There are two distinct advantages
to this approach:

a. It eliminates the coding and execution of complex subdivision
logic.

b. It can be performed once for each concave area target and
space volume and does not have to be repeated each time A0S
and LOS times are desired.

The treatment of concave polygons will place additional require-
ments on the target tables other than those specifically mentioned
in reference 1. 1In addition to the number of sides and coordinates
for each vertex, the target tables must also contain the following
for each polygon-shaped target

Nseg - number of segments into which the target is subdivided

(3 > Nseg > 1 for polygons having five or less sides)

VOi - integers defining the counterclockwise ordering of the
vertices for each segment (i = 1,2,...Nse9)

The use of these additional parameters can best be illustrated by

example. For figure A-3, this pentagon is subdivided into two

segments. The first segment is a four-sided polygon defined by

vertices 1, 2, 3, and 5. The second segment is a triangle defined

by vertices 3, 4, and 5. The corresponding parameters for this

pentagon would be

N = 2

seg
VO1 = 1235 (or 2351 or 3512 or 5123)
VO2 = 345 (or 453 or 534)

o~ ——— e p———

1This can easily be performed by plotting the vertex points
on a Mercator projection.



Similarly, for figures A-2(b) and A-2(c):

a. Figure A-2(b)

N = 3

seg
VOl = 125 (or 251 or 512)
VO2 = 235 (or 352 or 523)
Vo3 = 345 (or 453 or 534)

b. Figure A-2(c)

N = 3

seg
VO1 = 125 (or 251 or 512)
VO2 = 245 (or 452 or 524)
VO3 = 234 (or 342 or 423)

For consistency, this approach can also be used for convex polygons.

In this case, Nseg would be one and VO1 would be set to the

counterclockwise vertex sequence.

For computational purposes, the number of sides for each segment,
n,, can be extracted from the vertex ordering integer, voi, as

follows
n; = highest values of n; where TRUNC {—7 =7 >0 (A-4)
10t
where

TRUNC implies integer truncation.

The vertex numbers, Vj' corresponding to each vertex of the ith

subpolygon can also be extractad from the vertex ordering integer

as follows



vo;
V, = TRUNC ——nl_-I (A-5a)
10
E ni-ﬂ,
vo; - v, 10
V. = TRUNC Izl j = 2,3,...n, (A-5b)
J 107i73 *
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CONIC INTERSECTIONS

This appendix presents the equations to compute the intersection
points between two right circular cones.1 The required input
parameters are

~

Vl - unit vector along the axis of the first cone

Yy - half-cone angle of the first cone

V, - unit vector along the axis of the second cone

2
Yy = half-cone angle of the second cone

The guantities to be computed are

I, and Iz - unit vectors to the intersection points of the

two ~ones

Figure B-1l illustrates the two right circular cones and the inter-
section points. The coordinate system for the cones is arbitrary

and the only restriction is that both V1 and V2 must have a

common origin and must be expressed in the same system. The first
step is to determine whether the relative orientation of the two
cones permits any intersections. This can be determined by com-
puting the angle between the axes of the two cones.

~

L
Y = cOs {Vl V2} (B~1)

—

These equations can also be used to compute the intersection
points between a right circular cone and a plune or the intersection
points between two planes.



Conic intersection
points

Figure B~1l.- Intersection of two cones.

B-2



The cones will not intersect if

Y > vyt Y, [fig. B-2(a)] (B-2)

or
Y + smaller {v,: Y,} < greater {vy: Y,} [fig. B-2(b)] (B-3)

Assuming intersections are possible (i.e., neither equation B-2

nor B-3 is sctisfied), the next step is to compute the intersection
vectors. Figure B-3 illustrates the geometry. The intersec~tion
vectors are sxmetrically located on either side of the arc connect-

ing vectors Vl and Vye Furthermore, the intersection vectors

lie on the perimeter of both cones. Thus, all of the sides of the
spherical triangle connecting vectors Vl' VZ' and Il are

known
side a (connecting Vv, and 1I,) = Yy
side b (connecting v, and I, ) = Y,
side c (conntcting vy and v, ) = vy

The angle from side 'c' to side 'a' can be determined using the
half-angle formula for spherical triangles. The result is

1

B = 2 tan

LS (B-4)
sin (S - yz)

where

(B-5)

Jsin(s - Yl) sin(s - Yz) sin(S - y)'
K=+

sin (8)

s=1/2 (Yl + oy, + Y) (B-6)



(a) Y>Y1+Y2

(b) Y + smaller {Yl : YZ} < greater {Yl : Yz}

Figure B-2.- Conditions when cones do not intersect.

B-4



Figure B-3.~ Spherical geometry to compute intersection points.

B~5



The dual value of K in equation B-5 produces two values of B

in equation B-4. These values of B are equal in magnitude but
opposite in sign and correspond to the two intersection points.1
The unit vectors to the two intersection points are given by

zlx 22x le cos B sin Yl

~

I,2 =) Y1y Yoy Vi +sin B sin v, (B-7)
212 RZz Viz cos ¥y
where G
1 => (le, Vly' Vlz)
by =2 Ugyr Lyur 15))
V, XV
= A—l'—a—z— (B-8)
vy X V,|
11 => (llx' 21y' llz) (B-9)
= 12 X Vl

IFor the special case of B = 0, the two intersection vectors
are coincident. This physically corresponds to the situation when
the two cones are tangent.
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